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The state of stress in a shell is frequently split up into two parts: one smooth part (the 
fundamental part of the solution), and one rapidly decaying part from the boundary into 

the interior of the region. (The usual edge effect @] and the simple edge effect in vibra- 

tions p] or stability [3]. ) 
Below we present noncontradictory boundary conditions for the degenerate problem 

(the fundamental part of the solution). A theorem is formulated on the perturbation of 
the linear boundary value problem of the ordinary differential equation by an operator 

of higher order, whereby the small parameter enters not only the perturbed operator (see 

[4], supplement III), but also the boundary conditions (small parameter characterizes thin- 

ness of the shell). In essence, the formulation of Theorem 7 from [4] (supplement III) is 
made suitable to problems arising in the theory of shells p]. The boundary conditions 

of the degenerate problem of the system of ordinary differential equations are discussed. 
Examples are given of the simplified theories and associated boundary conditions for 

certain types of edge supports of the shells of revolution. As a special case the simplified 
theories for cylindrical shells are considered. A comparison for the boundary conditions 
of simplified equations with results by other authors are given. 

1, Let us consider an ordinary differential equation with constant coefficients 

Let Eq. (1.1) with boundary conditions containing small parameters 
k+-t-1 

LimU = ,JJ bijm $= Tim 

(~~20, m=U; i==l,._.,r) 

($=I, m==l; i=l,.,., k-+-l--r) 0.2) 
j=O 

have a unique solution for arbitrary right-hand sides in (1.2). where e is a sufficiently 
small positive quantity. 

let us assume that the characteristic equation, corresponding to (1.1). has I large roots 

of order 0 (e-‘> and k finite roots, whereby among the 1 large roots p have a negative 

real part, while (i- p) possess a positive real part. 
bet us denote the boundary conditions written out in canonical form if they are solved 

for terms characterizing the maximum of the parameter p (p = IZ - /c*, k* are 
integers). 

x=0, m=O; i = 1,. . ., r; pP</.hO<. . . <ho 

z== i, m= 1; i - 1, . . _, k+-1-r; pP<~?<--.<li~+~__~ 

Here l.t, n, ti” are functions with integer arguments 
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p = ~1 (4 m), n = n (i, m), k” = k (i, n) 

Let us note that in passing from the ith boundary condition to the (i 
parameter p, is increased, i.e. Jo (i) < f.~. (i + 1). In relations (1.3) 

_ 

II 

+ i)- th one, the 
there are no 

small parameters e with negative powers, i. e. k (i, m) > 0 for all i and m. Further- 

more, the small parameter S is not a common factor in the expression Li,*U = @im. 
In the special case, when k (i, m) s 0, the formulation of the boundary conditions 

(1.3) coincides with the canonical form introduced in supplement III of [4]. 
Theorem 1. If the problem, 

A&, = ur s-1... + U&O = 0 (1.4) 

Lim”uO=@imo (x=0, m=O; i=l,..., r-p; x=1, m=l; i=l,..., k-_r+p) 

(1.5) 

has a unique solution, the solution U, of the problem (1.1). (1.2) approaches the solution 
of the problem (1.4). (1.5) if E - 0. 

It is necessary to note that Limo, Dim ’ in (1.5) differ from (1.3) because Limo, 
@imo do not contain any terms with small parameter 8’. 

Proof. The asymptotic solution of problem (1. l), (1.2) is sought in the form 

S S S 
zlE = 2 eSug + E= 2 e*v, + es z F?wg + ZS (1.6) 

s=o s=rJ s=o 
Here ZS is the remainder in the expansion ; vg and wI are functions of boundary layer 

type in the vicinity of points z = 0 and 1, respectively ;both these functions are con- 
structed taking into account the smoothing factor, as was done in [4], while a and p 
are some constants. 

The asymptotic solution (1.6) is substituted into (1.1) and (1.3), whereby for vg and 
ws the representation of the operators A,and L i,,,+is used in which the scale in the vici- 

nity of the points z = 0 and I - 1 is taken into account, just as in [4]. In the expres- 
sions obtained the coefficients of like powers in E are set equal to each other [4]. The 

fundamental part of the solution is determined from Aouo = 0. The boundary conditions 

for this equation are (1.5). 

From boundary conditions for solutions of boundary layer type in the vicinity of x = 0 
and 1 the constants a and 6 are determined. For example, for a correct construction of 

the iteration process a is determined from the relation, see (1.3). 

CZ=?Z(r -P + 1, 0) --kk--p+ 1, 0) 

The subsequent approximations are problems obtained after setting equal to zero 
expressions with the subsequent powers of e. One should not forget to take into account 

that for ug, vI (s # 0) the boundary conditions are somewhat more complicated as com- 

pared to the corresponding boundary conditions in [4] (supplement III). This is due to 
the fact that in addition to the boundary layer, which is determined by the perturbed 

operator of higher order, there are present perturbations of boundary conditions both in 
the fundamental part of the boundary conditions 

L im*u, = mim (m=O,i=l,..., r-pp;m=l,i=l,..., k--r+@ 

and in the boundary conditions for the solutions of boundary layer type. The perturbation 

of the boundary condition is discussed in [4] (Sect. 4, item 2). 
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It is now obvious that the scheme for proving Theorem 7 from [4] (supplement III) can 
be completely applied to the present theorem. 

Consequently, the asymptotic representation of solution (1.1) and (1.2) in the form of 

(1.6) is valid, and therefore lim Up = u,, for F + 0. This is what we had to prove. 

Thus, the theorem permits to obtain from (1.2) noncontradictory boundary conditions 

(1.5) for the degenerate (simplified) equation A u ,, s = 0. Indeed. the solution uE of the 
complete problem (1.1). (1.2) differs from the solution of the degenerate problem (1.4). 

(1.5) only through terms with small parameter .F, whereby s > 0. 
If, by some means, simplified boundary conditions are obtained from (1.2) for the same 

equation (1.4), different from (1.5), then the solution in the form (1.6) cannot be con- 
structed, since the expansion (1.6) is unique. And consequently, such simplified boundary 

conditions are contradictory, because the solution uI of the complete problem and the solu- 
tion u,,* of the degenerate problem have nothing in common in this case as E 4 0. 

Example 1. Let us consider a differential equation of second order, which is per- 
turbed by an operator of fourth order, 

&J4) - u” czz 0 

for boundary conditions 
1Lg + u” =2, u’ - ek U” = i (5 = o,l) 

The conditions of the theorem are fulfilled and, consequently, the boundary conditions 

for the degenerate equation ul’ = 0 (E + 0) depending upon the value of the parameter 

k take on the form k = o 
k=l k>2 

ug + Q” = 2 ug + uo” - uo = 1 uo’ = 1 (I = 0, 1) 

We note that for k = 0 we may use Theorem 7 from [4] (supplement III), and for 
k > 6 it is necessary to apply the formulated Theorem 1. 

2. Problems of the linear theory of shells are problems on a system of two differential 

equations for functions of normal deflection and the stresses p]. Generally speaking, 

such a system cannot be reduced to a single equation, and therefore we shall adapt the 

formulation of Theorem 1 to the investigation of systems of ordinary differential equa- 
tions with analytical coefficients, when the small parameter E (in the theory of shells 
it characterizes the thinness of the structure) enters the system of the equations and the 

boundary conditions. Let us make use of the vector notations 

B,U’= AU (O<xX,o 

i,u =- (Pm (m=O for 5 =O, m= 1 for 2= 1) 

(2-l) 

(2.2) 
Here A and & are quadratic matrices with analytical coefficients of order 1 + k, 

whereby in the matrix B, only the terms bij on the main diagonal i = j are different 
from zero; further, bii = 0 (E) for f > k, and bii = 0 (I) for i < h-: U is a vec- 
tor function ; _&,, are matrices (form = 0 the number of rows is r, for m =I 1 the num- 
ber of rows is k + 1 - r), rpm is a vector. The matrices B,, A and L,contain terms 

with small parameters. Regarding the possibility of reducing an arbitrary system tothe 
form (2.1) see [5], Sects. 37, 38. 

We consider such problem (2.1) in which for E = 0 the order of the degenerate 
(reduced according to [s]) system is k (k + 1. Let us assume that the characteristic 
polynomial of order k + 1 (see Sect. 1). corresponding to A - a& possesses for each 
5 E LO, 11 l large roots of order 0 (e-l) and k finite roots, whereby among the I 
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large roots p possess a negative real part, while I - p possess a positive real part. 
Note. In the present analysis the case is not studied when the number of finite roots 

and roots of order 0 (E-I) is changing as x E [ 0,i 1, see, for instance, 163. 
In analogy to Sect. 1 we introduce the definition: the boundary conditions are called 

as being written in canonical form if they are solved with respect to terms which charac- 

terize the maximum of the parameter ~1 and in the passage from a previous to a subse- 
quent boundary condition the parameter p increases (p (i) < p (i j- 1)) 

r,*v = CDm (m=O for z=O, m=l for ~~1) (2.3) 
The rectangular matrices L,* are of the form 

L,* = (2.4) 

The number of columns in L,” coincides for rn = 0, 1 and is equal to k, while the 
number of rows is r --pfor m=O and k--r+p form=.l. JustasinSect.1, 
no boundary conditions (2.3) contain E with a negative power and it is not a common 
factor. The parameter p is calculated in accordance with the following rule: 

P= -k*--n (k*>O, n>,(j) 

where k* = k (i, j), n = n (i, j) are powers of the small parameter in terms with 
L,” and in the solution of the boundary layer type Ui near x = 0 and winear x = 1 

(C,j = 0 (11, Clj = 0 (IIf 

vi = 5 cojE~exp(-.J$-) (i=k+l,..., k+p) 

j=l 

t---P 
(2.5) 

Wi= 2 CljEn exp 
41j("-- $1 

e (i=k+p+f,..., k+l) 

j=l 

The boundary layers vi and w1 are decaying from the boundary into the interior of the 
region of the solution of the systems of equations with constant coefficients 

B*OV’ ZzC ‘4”“V fj”lW zz A*fW 

The quadratic matrices B*‘, B*‘: A*O, A*l having the order 2, correspond to 

the right lower comers of matrices&and A, if we set in the latter x = 0 and x = 1, 

(2.6) 

let the problem (2.1). (2.2) for an arbitrary vector (Pm have a unique solution if e > 0 
is a sufficiently small quantity, and the number of boundary conditions (2.2) for x = 0 
and 1 is larger than the corresponding number p and t - p (r > p, k + 1 - r > l- 
-p), i. e. the condition of regularity of the degeneration [4] is fulfilled. “Roughly speak- 

ing, the condition of regularity indicates that the boundary conditions should not be dis- 
tributed too unevenly between two boundary points” ( [S], p. 272). 

Theorem 2. Ifthe problem 

B,U,” = A,U, f2.7) 
L,OU, = @, (m = 0 for x = 0, m = 1 for 5 = 1) 

(2.8) 
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possesses a unique solution, then the solution u, of the problem (a. 1),(2. 2) approaches 

the solution of the problem (;2.7), (Z.8), as F - 0. 
The matrices B,, AO, Lrno and the vector .C&O are determined above in (A. 3). (a. 4) 

and (2.6). 
The proof of Theorem B is analogous to the proof of Theorem 7 in [4] (supplement 

III), see discussion in Sect. 1. 
Thus, the theorem formulated permits to obtain noncontradictory boundary conditions 

(S. 8) for the degenerate problem B,U,’ = AoUo,. 
Example 2. We consider the system of differential equations of fourth order 

BJJ’ = AU (0 < 5 6 1) 

bll 0 0 0 0 al,! 0 0 Ul 
0 b*?, 0 0 0 0 a13 0 Be= (-J= 0 0 

ebs, 
0 ’ A= 0 0 0 a34 ’ 2 

0 0 0 - eb44 0 0 a43 0 U4 

with the boundary conditions 

u1 + U3 = 2, u2 + ek-Iu4 = 1 (x = 0,1) 

Here bij and aij are analytical functions, and h- is some number. If the conditions of 
Theorem P are satisfied, then for the degenerate (simplified) system of second order 

(e -+ 0) bllu,l I- - a1!Poz, b,,uoz’ = 0 

the noncontradictory boundary conditions are 

k-0 k=l k>2 

hi + 413 = 2 UOl + uos - uo2 = 1 z&J* = 1 (5 = 0.1) 

We note that for bll = h,, = b,, - bd4 = 1 and al2 = a2? = as4 = a43 = 1 this 

example coincides with Example 1. 

3. Let us consider only shells of revolution. Problems of the theory of shells are prob- 
lems on a system of two differential equations with a small parameter of high deriva- 

tives p] h,2NO + LCD + ?&CD = F (3.1) 

The boundary conditions for system (3.1) are of the form 

Rig = ‘pi (i = I, 2, 3, ‘t) (3.2) 

Here L, N, Mare linear differential operators with two independent variables, 

whereby the order of operator N is larger than that of L, while d4 has either the same 
order as L or larger ; jl is a parameter of the loading or of the natural frequency (for 

strength problems h E 0); Ri are linear differential operators, determined on the con- 
tour of the shell ; vi and F are specified loadings (displacements) along the contour 
and on the middle surface, respectively ; ho is a dimensionless thickness of the shell. 

Generally speaking, the small parameter ho may not enter into the operators fil. For 
example, for the theory of shallow shells the boundary conditions are written down with- 
out a small parameter. Yet the more refined versions of the theory of shells contain a 
small parameter ho multiplying both the smallest and the largest derivatives in Ri. 

Furthermore, we have to take into account that F and cpi may be oscillating functions. 
Therefore it makes sense to consider “problems il: which for an unbounded decrease of 
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&I in Eq. (3.1) tile oscillatory behavior of the boundary conditions (3.2) or of the free 

term in (3.1) is increased according to a definite law”. see 03. introduction. 
And finally. for problems on free vibrations and stability “the smallest eigenvalue A 

in several cases corresponds to eigenfunctions with a rather large., . number of nodal 
lines” pl]. 

In all these three cases we obtain after separation of variables a system of ordinary 
differential equations with some boundary conditions. Both in the system and in the 

boundary conditions terms with a small parameter are present (the separation of varia- 
bles may be always achieved for complete shells of revolution if the ends of the shells 
are normal to the axis). 

The obtained problem for the system of equations can often not be reduced to prob- 

lems (1. I.). (1.2) ; (2.1). (2.2). This is connected with the fact that the order of large 
roots of the characteristic equation may differ from 0 (a'). Therefore, instead of F, 
we introduce into the system and the boundary conditions another small parameter 
6 =-f eY where 7 is the order of the large roots with respect to the characteristic equa- 

tion in k , and therefore either Theorem 1 or 2 may be applied, i.e. the last p and 1-p 

boundary conditions un (1.3) or in (2.3) are omitted as well as the terms in small para- 
meters. 

In the case when the order of the large roots is different, for example 0 (,aoY1) and 
0 (E-y2), among the two the larger number y1 > ys is selected. All arguments are 
carried out first for the roots of order -yl (6, = e”). We obtain the first degenerate 
(reduced) problem (see Theorems 1, 2). This first degenerate problem is simplified 
further. The simplifications are now carried out for 6, = e”. Applying once more 

either Theorem 1 or 2, we obtain the second degenerate (simplified) problem. 
Thus, for the simplified theories of shells a procedure is indicated to obtain noncon- 

tradictory boundary conditions (1.5) or (‘2.Q whereby the solution of the complete equa- 
tions of the theory of shells does nat differ considerably from the solution of the simpli- 

fied equations if the parameter 6 is small. 

4, Let us consider some examples in greater detail. Let us estimate the influence of 

the type of support at the ends of the cylindrical shell,subjected to external transverse 
or hydrostatic pressure on the parameter of critical loading, if the analysis is carried out 

using the approximate theory (theory of shallow shells) and a refined theory of type [7]. 
The estimates obtained will be compared with numerical calculations from [3, 83. 

In the problem considered, to the smallest eigenvalue 1 iiiere corresponds a definite 
number of waves of loss of stability n along the circumference. If the support is a hinge 
or a clamping, then n2 = 0 (E-i), E = (h / R)“? 

ISere R is the radius of the shell and h its thickness. 
We investigate the characteristic equation of the differential expression, which is 

obtained from (3.1) after separation of variables. The order of the roots of the edge 
effect, to which there corresponds an oscillating solution, is -0 (E-l). The roots which 
generate a nonoscillatory edge effect, have the order 0 (E-“~). The fundamental part 
of the solution, which embraces the whole region, is oscillating [3, 81. 

The boundary conditions of the hinged or clamped type considered in 13, 81, after 
separation of variables contain small parameters. Exceptions are the boundary conditions 

N1=u=u?=M~=cl (4-f) 
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Here &, is the force along the generator, w is the nominal deflection, 27 is the dis- 
placement along the circumferential coordinate, 24, is the bending moment. These 
conditions take on the form after the separation of variables 

f E f” = #f(4) = f@’ = () (4.2) 
If in a complete equation of eighth order with boundary conditions (4.1) at bdth ends 

the small parameter is approaching zero E -> 0 (h - 0), then the boundary conditions 
for the degenerate (simplified) problem (see 141, supplement III) are f. = fa” = 0 (the 
degenerate equation is of fourth order), while the boundary conditions for the still more 
simplified theory (equation of second order) are f. = 0. 

For other types of support the canonical form by contrast to (4. ‘2) is determined by 
the maximum of parameter p (see Sect.1). The canonical form of the boundary condi- 
tions for one of support versions (the degenerate equation is of fourth order} 

N, = 21 = W = W>% = 0 (4.3) 

f = 0 (r_lI L= O), f" = 0 (f&J = 21, y7 'c7 f’ = 0 (pa = 3), f(J) = O(pa = 4) 
where x is a coordinate along the cylinder axis, vf = f” - n”f. The canonical 
form of the boundary conditions for clamping 

N,~~~u?=M,=O (4.4) 

is more unwieldy than (4.3)* Formally Eqs, (4.4) may be rewritten as 

f” =: j”’ z 0 (45f 

The series are assumed to be convergent. If in the expression forMIPcisson’s ratio is 

set equal to zero, then before the parenthesis in the last condition (4.5) the small para- 
meter enters in its first power. It is precisely this case which is being analyzed in the 

sequel. 

Following the rule, the boundary conditions should be given the form (the degenerate 
equation is of fourth order) 

Q‘o (a*f@) - f”) + ,a/?f(*) 2 a# -+ f = 0 (Pl = 1) 
j_;I 

E (ep 5 6j.d + f(4) 5: qej j f f = 0 (p4 = 4) 

j=O j=O 

From the boundary conditions (4.3) and (4.6) in canonical form a judgement can be 
made concerning the order of corrections to the parameter of the critical loading X0. 
The parameter Sois determined for a shell hinged at both ends (see (4.1) ). For bound- 
ary conditions (4.3) and (4,6), as compared to (4. Z), it is the third condition which 

appears to be “spoiled”. Therefore the relative correction 1% f ho \ for conditions(4.3) 
or (4.6) cannot be large. as calculations have shown f 31. 

The largest relative correction is obtained if the fundamental boundary condition 
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either the first or the second in (4.2) is “spoiled”. This takes place when such support 

conditions of the shell are considered that the displacement u in the axial direction of 
the cylinder is constrained. For example, for the supports 

u=w=s=w,X=o 

the canonical form of the boundary conditions (the degenerate problem is of fourth 
order) is 

f’ = 0 (pt = I), OVf = 0 (&$ = 2), f”’ = 0 (p3 = 3), p = 0 (p.,=5) 

The calculations carried out in [8] have shown that the boundary condition u = 0 
essentially changes the value of the critical load. 

When shells with free edges are investigated, it is necessary to employ refined equa- 
tions of stability and corresponding boundary conditions 01. for example [3], Sect. 2. 

The boundary conditions of the refined theories contain terms with small multipliers. 
At a free edge all force factors are equal to zero (Qi* is the generalized transverse 

force) N, = s = Mi = Qi* = 0 (4.7) 
A detailed writing out of (4.7) after separation of variables is given in Sect. 2 of [3]. 

The boundary conditions for the degenerate problem are formulated in dependence on 
the number n of circumferential waves. When n = 2 (R / h = IOO), the boundary 

conditions of the degenerate problem of fourth order are of the form 

fo” = 0 (pl = 2), fo” = 0 (pg = 3) (4.8) 

The degenerate problem of second order for the first form along the axial coordinate 
is without meaning since the nonoscillatory edge effect embraces the whole shell (see 

C31). 
In the case when n2 = 0 (8-l) (this is the n for the smallest critical load of the 

second form of loss of stability along the axis of a coordinate of a cylindrical shell, one 

edge of which is hinged while the other is free, R / h = IOO), the boundary conditions 
of the same limiting problem of fourth order takes on the form 

f,, - bOf,,“’ = 0, f,,” = 0 (4.9) 

The first condition (4.9) corresponds to the boundary condition, see (4.4) and (4.5) 
(Poisson’s ratio is different from zero in M,) 

b. ($f@) - f”‘) + b,e4fc6’ + E?c~~(~) + Sf@) 5 bjd -t_ iGf(‘) ,$j C@ + f = 0 

(4.10) 

j=2 I=1 
The passage from (4.10) to the first condition (4.9) is realized as E -+ 0. In condition 

(4.10) the terms are already omitted which have no influence on the result. These terms 
appear because more accurate expressions than (4.5) should be considered. 

Since the root corresponding to the nonoscillatory edge effect for the second form, is 
of the order 0 (d/z), the boundary conditions of the degenerate problem of second order 
are fo” = 0. Evidently, the fundamental part of the second form of buckling along the 
axial coordinate is the half sine wave for the shell, whose one edge is hinged (4.1) and 

whose other end is free (4.7), see [3], Fig. 1 m = 1. 
Thus, for the same equation of fourth order different boundary conditions (4.8) (4.9) 

are obtained, even though the original conditions of support coincided and have the form 

of (4.7). 
The procedure of determining the boundary conditions for approximate theories of 



shells in [9, 101 does not always lead to results which coincide with those presented above. 
The formulated Theorem 1 (we recall that this theorem is a different version of Theo- 

rem 7 from [4]) permits to approach systematically the formulation of the boundary con- 
ditions of the simplified equations of the theory of shells. Theorem 7 from [4] among 

the discussed five versions of boundary conditions is applicable directly only to (4. I), 

see (4.2). 

6. The determination of noncontradictory boundary conditions requires in the general 
case for the shells of revolution rather cumbersome yet simple calcuIatians. 

Below we compare the noncontradictory boundary conditions of the degenerate prob- 

lem of fourth order (see Theorem 2) and the boundary conditions for the simplified equa- 
tions of stability of circular conical shells under hydrostatic pressure [6, 111. The com- 

parison is carried out for the end t = 1, (see [6]). All notation in this section coincides 
with the notation of paper [6], because it was suitably introduced there 

/ca I=I: 0 (E-‘/z) IJ = cp = 0, II, zz Tp = 0 $ = cp z 0 

k2 zz 0 (&-I) 9 z qJ = 0 I$ = p$’ - “‘p = 0 9 = cp = 0 

h.2 = 0 (e-X) $ = cp =: () Q -_ 9’ == 0 - 

Here 9 and cp are functions of normal deflection and stresses along the generator, ii 
is the circular frequency of change of the state of stress after loss of stability when the 
shell is passed along the parallel, E is a small parameter, Column 1 corresponds to corn- 

plete boundary conditions (1.5) from 161; 2 to (1.4) from [6]; 3 to (10) from pl]. All 
boundary conditions of the first column coincide with the simplified bounda~ conditions 
(2.3) of system (2.1) [S], in the second column the last row coincides with the simplified 
conditions (2.2) of system (2.1) f6 J, The line in the third column replaces a cumbersome 

expression. None of the versions of the boundary conditions of the last column coincides 

with the simplified boundary conditions (12) from PI]. 
The sequence of calculations in the determination of the noncontradictory boundary 

conditions of the degenerate problem given in the table is as follows: first we invesrigate 

the transformed systems of the equations which describe the stability of shells : (IL. 2) 
from [6] and (9) from PI] ; we determine the four largest, by modulus, roots, whereby 
two of them possess a negative real part, while two have a positive real part ; we intro- 
duce a corresponding small parameter (see Sect. 3) ; we determine the edge effects(2.5) 

and the degenerate system of the equations of fourth order (see (2.1) [6]) ; the boundary 
conditions (1.4) and (I. 5) from [6] and (10) from pl] are written down in canonical 

form (2.3), (2.4) (the parameter p is calculated first); now we have only to strike out 
the two last conditions in (2.3). in the remaining first two, if there are terms with the 

small parameter E, the small parameter has to be made to approach zero E -A 0; after 
all this we revert to the old notation. 

Thus, as in the preceding section, the essential dependence of the boundary conditions 
of the degenerate problem on the frequency of oscillations k is uncovered, The existence 

of this phenomenon was indicated in /J J, p. 4. 
The effected separation of the state of stress of the shell of revolution into two parts per- 

mits the application in each part of special methods of solution, namely : the fundamen- 
tal part of the solution (the degenerate problem with its own boundary conditions) is 
constructed suitably by.variational or by numerical methods, because this part of the 
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solution, as a rule, changes smoothly, and this solution is to be corrected by the edge 
effect, whose effective construction is well known fl, 41, For example, in parers [6, 123 
the fundamental part of the solution in stability problems of shells of revolution is written 
out in explicit form with great accuracy. Separation of the boundary conditions in the 
linear theory of shells permits the passage to the analysis of more complicated problems 

[13, 141. which arise in the analysis of thin-walled stiffened structures. 
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